Tetrahedron Letters, Vol.23, No.25, pp 2597-2600, 1982 0040-4039/82/252597-04\$03.00/0 Printed in Great Britain

NOVEL REACTIONS OF 1-BENZOYL-2-METHYL-3,4-DIHYDRO-2-THIANAPHTHALENE WITH COMPOUNDS HAVING AN ACIDIC HYDROGEN

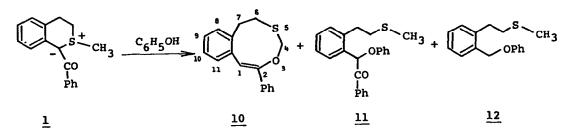
Mikio Hori^{*}, Tadashi Kataoka, Hiroshi Shimizu, Eiji Imai, and Akihiko Tomoto Gifu College of Pharmacy, 6-1, Mitahora-higashi 5-chome, Gifu 502, Japan

Summary: Thermal reaction of 1-benzoy1-2-methy1-3,4-dihydro-2-thianaphthalene(1) with acids or thiols in benzene afforded ring-opened products cleaving C_1 -S bond. On the other hand, ring-expanded product was produced by the reaction of 1 with imides or phenols.

It is well-known that sulfur ylides are easily protonated by acids to form sulfonium salts. However, further reactions of the sulfonium salts have not been studied. Previously, we reported that a thermal reaction of benzoyl-stabilized cyclic sulfur ylides in alcohols was initiated by protonation of alcohols to a ylidic carbon followed by the nucleophlic attack of an alkoxide ion to a carbonyl The report attracted us to the possibility of extending the concept to carbon.1) other compounds having an acidic hydrogen atom.

We examined the reaction of 1-benzoy1-2-methy1-3,4-dihydro-2-thianaphthalene (1) with acids, thiols, phenols, and imides. In this communication, we wish to report very unique results that the sulfonium ion formed initially was attacked site-selectively by the counter anion to cause a new ring-opening reaction or a novel ring-expansion reaction.

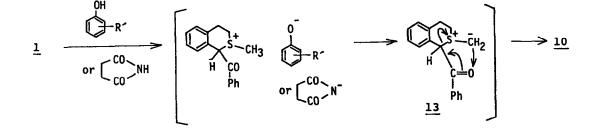
Refluxing ylide 1 in benzene with 2eq. of acetic acid afforded o-(α -acetoxyphenacyl)phnethyl methyl sulfide(3) as a colorless oil in 89.0% yield: ¹H-NMR (CDCl₃) δ 2.12(3H,s,CH₃), 2.18(3H,s,COCH₃), 2.50-3.30(4H,m,CH₂×2), 7.10(1H,s,CH), 7.15-7.55(7H,m,ArH), 7.77-7.98(2H,m,ArH); IR (neat) v max cm⁻¹ 1700, 1745(CO); MS m/e 328(M^+). The sulfide 3 was produced by the reaction pathway that C₁-carbanion was protonated by acetic acid to form the sulfonium ion 2, which would be attacked on C_1 -position by acetate anion and cleaved C_1 -S bond. Under similar conditions, ylide <u>1</u> reacted with other acids and thiols to afford ring-opening products $4-9^{3}$ as shown in Table I.



Acids and Thiols(RH)	Molar Ratio	Time(hr)	Product(Yield:%)
СН3СООН	leq.	7	<u>3</u> (89.0)
C6H5COOH	10eq.	9	<u>4</u> (81.8)
C6H5COSH	leq.	2	<u>5</u> (94.1)
o-HO-C6H4COOH	2eq.	18	<u>6</u> (66.0)
о-н ₂ N-С ₆ Н ₄ СООН	2eq.	17	<u>7</u> (53.4)
с ₆ н ₅ sн	leq.	23	<u>8</u> (95.2)
C6H5CH2SH	leq.	25	<u>9</u> (44.0)

Table I: Thermal Reaction of Ylide 1 with Acids and Thiols

Different from the reaction with alkoxide anions,¹⁾ carboxylate or thiolate anions attacked on C_1 of the sulfonium ion 2. Therefore, we examined the reaction of 1 with phenol which is less acidic than carboxylic acids or thiols, and more acidic than alcohols.


Refluxing ylide <u>1</u> in benzene with 2eq. of phenol afforded ring-expanded product, 2-phenyl-6,7-dihydro-3,5-benzoxathionin(<u>10</u>)⁴) as a colorless prisms: mp.107°; ¹H-NMR (CDCl₃) δ 2.74-3.30(4H,m,CH₂×2), 4.84(2H,s,CH₂), 6.45(1H,s,CH), 7.10-7.80 (9H,m,ArH); ¹³C-NMR (CDCl₃) δ 32.234(C-7), 36.668(C-6), 72.316(C-4), 113.904(C-1), 139.611(C-2), 126.356, 126.722, 127.307, 128.500, 128.695, 129.233, 129.397(ArC); MS m/e 268(M⁺). However, with 10eq. of phenol the ylide <u>1</u> afforded <u>10</u> and ringopened products, <u>11</u> and <u>12</u>³ in 50.0%, 12.3%, and 19.8% yield, respectively. Further, with 100eq. of phenol the products <u>11</u> and <u>12</u> were obtained in 27.2% and 47.6% yield, respectively.

The probable mechanism for the formation of <u>10</u> involves the hydrogen abstraction of methyl group of sulfonium ion <u>2</u> by phenoxide ion followed by [2,3]sigmatropic rearrangement⁵⁾ of the methylide intermediate <u>13</u> to the nine-membered ring product <u>10</u>. The result that the addition of phenol decreased <u>10</u> and increased <u>11</u> and <u>12</u> would be explained in the following way. Accompanied by the quantity of phenol, the ability of hydrogen abstraction from S-methyl group is decreased because of the intermolecular hydrogen bonding between phenoxide anion and excess phenol, and consequently, the nucleophilic attack of C₁ or a carbonyl carbon is increased. In the case of 100eq. of phenol, phenoxide anion formed the hydrogen bond with phenol appears to attack the less crowded site, a carbonyl carbon, predominantly. In order to elucidate the influence of the substituents of phenols for the formation of <u>10</u>, the reactions of <u>1</u> with 2eq. of several phenols were performed. The results showed that the phenols having a methyl or a methoxy group at the ortho position afforded <u>10</u> in high yield as shown in Table II.

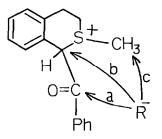
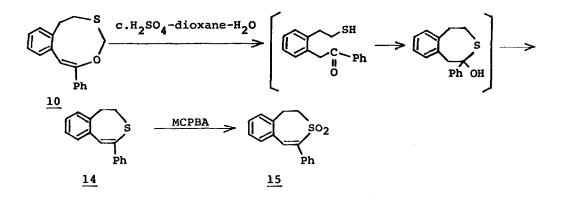

		<u> </u>
Phenols(R [^])	Time(hr)	Product 10(Yield:%)
2-NO2	43	21.3
2-CH3	20	75.5
4-CH3	37	52.7
2-0CH3	39	83.2
4-OCH ₃	60	49.3
2-NH2	24	14.5
4-NH ₂	22	13.1
2,4,6-CH ₃	65	80.0

Table II: Thermal Reaction of Ylide 1 with Substituted Phenols


If a counter anion of 2 abstracted a hydrogen of the methyl group of 2 siteselectively, it is possible to synthsize only 10 from 1. We selected imides for the reaction because the conjugate base has poor nucleophilicity but the ability of hydrogen abstraction. The reaction of 1 with succinimide or phthalimide afforded only 10, as was expected, in 74.7% and 69.9% yield, respectively.

In conclusion, protonation on C_1 -carbanion is the first step of the reaction of <u>1</u> with the compounds releasing a proton to form the sulfonium salt <u>2</u>. The reaction sites of <u>2</u> are varied by the species of the counter anion. Namely, alkoxide anions attack a carbonyl carbon (path a)¹; carboxylate or thiolate anions attack C_1 (path b); imidyl anions remove a hydrogen of the methyl group (path c). Further, phenoxide anion reacts to three sites (path a, b, and c) according to the quantity of phenol.

REFERENCES AND FOOTNOTES

- M. Hori, T. Kataoka, H. Shimizu, and A. Tomoto, Tetrahedron Lett., <u>22</u>, 3629 (1981).
- 2) Ylide 1 was stable in refluxing benzene.
- 3) All new compounds reported here had satisfactory analytical data.
- The structure of <u>10</u> was also established chemically from the following hydrolysis and oxidation.

2-phenyl-4,5-dihydro-3-benzothiepin(<u>14</u>): ¹H-NMR (CDCl₃) δ 3.28(4H,s,CH₂×2), 6.82(1H,s,CH), 7.02-7.70(9H,m,ArH); MS m/e 238(M⁺). 2-phenyl-4,5-dihydro-3-benzothiepin 3,3-dioxide(<u>15</u>): ¹H-NMR (CDCl₃) δ 3.25-3.70(4H,m,CH₂×2), 6.87(1H,s,CH), 7.15-8.00(9H,m,ArH); IR (KBr) v max cm⁻¹ 1120, 1289(SO₂); MS m/e 270(M⁺); mp. 99-100°.

- 5) Non-base catalyzed [2,3]sigmatropic rearrangement of phenacyl sulfonium ylides were reported.
 - a) K. W. Ratts and A. N. Yao, J. Org. Chem., 33, 70 (1968).
 - b) A. Terabe and Y. Kishida, Chem. Pharm. Bull., 18, 505 (1970).

(Received in Japan 17 March 1982)